返回顶部

[原创] 有限元分析求解问题的基本步骤

[复制链接]
最美时光Lv.2 显示全部楼层 发表于 2016-8-17 15:16 |阅读模式 打印 上一主题 下一主题
  元计算技术人员介绍:对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。有限元求解问题的基本步骤通常为:
  第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
  第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此求解域的离散化是有限元法的核心技术之一。
  第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。
  第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。
  为保证问题求解的收敛性,单元推导有许多原则要遵循。 对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。
  第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。
  第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、迭代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。
  简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。
  元计算科技发展有限公司是一家既年青又悠久的科技型企业。秉承中国科学院数学与系统科学研究院有限元自动生成核心技术(曾获中科院科技进步二等奖、国家科技进步二等奖),通过自身不懈的努力与完善,形成一系列具有高度前瞻性和创造性的产品。
  如果还有关于有限元的问题欢迎咨询元计算技术人员,更多有限元资讯请扫描二维码关注元计算官方微信:

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?加入我们

x
*滑块验证:
您需要登录后才可以回帖 登录 | 加入我们

本版积分规则




成型论坛 成立于2008年8月,是目前国内优秀的钣金成型类专业技术社区,拥有超过5万会员,形成了由钣金成型、金属材料、CAD工具、CAE工具、CAM工具、资料共享、资源下载中心等几大频道内容,为钣金成型类技术从业者提供了一个发现、使用、并交流技术的平台。
  • 官方手机版

  • 微信公众号

  • 官方微博